

Development of an MM5-Based Four-Dimension Variational Analysis System for Distributed Memory Computers

Frank H. Ruggiero

Space Vehicles Directorate

Air Force Research Laboratory

Hanscom AFB, MA

Background

Objective:

Take state-of-the-art weather analysis system and make it scalable for distributed memory multi-processor machines

Goal:

To bring mesoscale Four-Dimensional Variational Analysis (4DVAR) into the realm of operational forecasting

Support

Supported by DoD High Performance Computing and Modernization Office (HPCMO)

- Common High Performance Computing Software Support Initiative (CHSSI), project CWO-5
- 3 year effort, started February 2000

Participants

AFRL: Program Management

Frank Ruggiero

AER: Code Development

- Thomas Nehrkorn
- George Modica
- Mark Cerniglia

ANL: Parallel Implementation

John Michalakes

FSU: Physics Development, Test Data

Xiaolei Zou

4D Data Assimilation vs 4DVAR

Conventional Initial Conditions

4D Data Assimilation vs 4DVAR

MM5 4DVAR

Serial Version of mesoscale 4DVAR exists

Based on Fifth Generation NCAR/PSU Mesoscale Model, Version 1 (MM5v1)

Developed by Xiaolei Zou at NCAR and released in 1997

Original CWO-5 plan was to make this 4DVAR version scalable

Migration to MM5v3

CWO-5 migrated from MM5v1 to MM5v3 (v3.3) in Oct '00

- facilitate implementation of parallel strategy
 - save development time and effort
 - increase potential speedup factor
- sync 4DVAR system with newest forecast model
 - greater community acceptance

MM5 4DVAR System

The Tangent-Linear and Adjoint Model Compiler (TAMC)

TAMC is a source-to-source translator that generates Fortran code for the TLM or ADJ from the NLM code

- TAMC can be used remotely for noncommercial use, free of charge http://puddle.mit.edu/~ralf/tamc
- supports almost the full FORTRAN-77 standard and most Fortran-90 extensions to FORTRAN-77

The Tangent-Linear and Adjoint Model Compiler (TAMC)

Could incorporate TAMC as part of a precompilation process

- would make for truly "same source" 4DVAR system
 - need maintain NLM only

We use TAMC as a development tool only

- separately maintain TLM and ADJ
 - minimizes required changes to NCARsupported MM5 code

TLM, ADJ Code Generation and Test Procedure

Unit and Unit Integration Testing Requirements

TLM

$$\frac{\left[J(\mathbf{X} + d\mathbf{X}) - J(\mathbf{X})\right]}{dJ(\mathbf{X}, d\mathbf{X})} = 1 \quad \lim d\mathbf{X} \to 0$$

Where

 $J(\mathbf{X})$, $J(\mathbf{X} + \delta \mathbf{X})$ are cost functions from NLM

 $\delta J(X, \delta X)$ is from TLM

ADJ

$$\langle \mathbf{y}, L\mathbf{x} \rangle = \langle L * \mathbf{y}, \mathbf{x} \rangle$$

Where

x is TLM input

y = L(x) is TLM output

 L, L^* are TLM, ADJ

TLM and Adjoint Development Status

Serial version of MM5v3.3 TLM completed in December 2000

Migrated TLM to MM5v3.4 in Dec '00

- good test of our code generation/maintenance procedures
- v3.4 code generation and testing (TLM only) accomplished in less than one week!

Parallel Version of TLM completed in March '01 Serial version of Adjoint model:

Coding - 100% complete

Unit testing - 90% complete

Parallelization of MM5 TLM

Follows procedure developed for MM5v3 NLM

2-D horizontal data decomposition

Parallelization of MM5 TLM

2 2 2 2 2 2 2 2 2	222223333333
2 2 2 2 2 2 2 2 2	2223333333
22222222	2223333333
22222222	222233333
22222222	222223333
2 2 2 2 2 2 2 2 2	22222333
22222222	22222233
12222222	22222223
11222222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
111222222	222222222222
	T T - - - - - - -
111122222	2223232222
111111222	222222222222222222222222222222222222222
11112222 111111122 111111122	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1111222 111111122 1111111122 011111112	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11112222 111111122 111111112 011111111 001111111	
1111222 111111122 111111112 011111112 001111111	22222222
1111222 111111122 111111112 011111112 001111111 000111111	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Follows procedure developed for MM5v3 NLM

- 2-D horizontal data decomposition
- Communication of lateral boundary conditions between processors
- Implementation straight forward since data dependencies are similar in NLM and TLM

Same-Source Parallel Implementation

RSL - Parallel run-time system library

 Interface with MPI, provides high-level stencil and inter-domain exchange, irregular domain decomposition, automatic local/global index translation, and distributed I/O.

FLIC - Fortran loop and index converter

- Parser-based source translation tool that automates the conversion of program loops and array indices for distributedmemory parallel computers.
- Utilizes RSL-provided loop ranges.

Distributed Memory (DM)-specific code fragments

DM-specific subroutines

DM-related files

Includes makefiles, tables, misc files used to install,
 preprocess, compile, and link code in DM-parallel mode.

4DVAR Baseline and MPP Directory Build Structure

4DVAR Baseline and MPP Directory Build Structure

TLM Scaling Performance

Obtained bit-for-bit agreement (real*8) between 1processor, 4-processor parallel, and serial runs of TLM

- meets <u>final</u> project objective

Obtained 14-digit agreement between above runs on SGI Origin, ASC IBM SP3, and DEC Alpha Workstation cluster

meets <u>final</u> project objective

Parallelization of MM5 Adjoint

2-D horizontal data decomposition Communication for horizontal dependencies

- Analysis of dependencies in Adjoint
 - Significantly different from NLM and TLM
- Some restructuring of data (3D tend arrays)
- Implemented with RSL and FLIC

Distributed I/O

- Model input and output (similar to NLM)
- Scratch I/O for trajectories

Remaining Tasks

Complete Adjoint model testing

Code incremental driver

Complete Adjoint model parallel code implementation

Prepare satellite observation operators

Assemble satellite data preprocessor

b-Test

- emulate AFWA computing environment
 - IBM SP3 computer (either at ASC or NAVO)
 - operational dataset as input (from CRDA)
- compare forecast, timing metrics with AFWA-MM5 forecast

Summary

CWO-5 will produce MM5 4DVAR code for DM MPP

- based on current MM5 release
- Alpha version available Fall 2001
- Beta version available Fall 2002
- Project completion Feb 2003

CWO-5 development team has put considerable effort into ensuring

- risks are minimized for successful operational implementation
- product will be well tested and of high quality
- a robust update migration path exists